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N+TIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1306

THREE PAPERS FROM CONFERENCE ON “WING AND
TAIL-SURFACE OSC~TIONS” - MARCH 6-8, 1941, MUNICH

I. REMAR(S CONCERNING AERODYNAMICAIJX BALANCED
CONTROL SURFACES*

By H. S&ngen

II. AERODYNAMICAIJX EQUIVALENT SYSTEMS FOR
OF CONTROL SURFACES WITHIN THE SCOPE

TWO-DIMENSIONAL WiNG THEORY**
By L. Schwarz

III . COMPARATIVE CALCULATIONS CONCERNING
BALANCE OF CONTROL SURFACES~*

By F. Dietze

FOI?lIklORD

Because of the related subject matter in the

VARIOUS FORMS
OF THE

AERODYNAMIC

foregoing papers,
which were presented at the conference on “Wing smd Tail-Surface -
Oscillations” at Munich in March 1941, the NACA considered it desirable
to combine them into a single Technical Memorandum. These articles
follow in the same sequence as originally published in the Lilienthal-
Gesellschaft Bericht 135.

/

*~~Bemer~g Z~ aerodynmiech innenausgeglichenen Ruder.” Lilienthal-
Gesellschaft f~frLuftfahrtforschung Bericht 135, pp. 61-65.

**l!Aerodynamische Ersatzsysteme ftirverschiedene Ruderformen im Ralunen
der zweidimensionalen Tragfliichentheorie.” Lilienthal-Gesellschaft
fb Luftfabrtforschung Bericht 135, pp. 67-70.

**liVergleichsrechnungen zum aerodynamischen Ruderinnenausgleich.”
Lilienthal-Gesellschaft fiirLuftfshrtforschung Bericht 135, pp. 70-74,
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I. REMARKS CONCERNING

.> .,
cONTROL

By H.

AERODYNAMICALLY BALANCED

SURFACES

S8hngen

At the time I announced this lect-_rre,I intended to report on the
model with the so-called open gap (fig. la) as an idealized model of an
aerodynamically-balanced control surface. However, since the formulas
for the latter have been published, meanwhile, by K&sner and Schwarz
in their report on the oscillating wing with aerodynamically balanced
control surface (reference 3), I can limit myself to a few additional
remarks.

According to the concept of K&sner and Schwarz, the model with the
open gap should be used when the slot is completely filled by the flow.
For vanishing flow through the slot, on the other hand, the model with
the sealed gap (fig. lC and fig. 3) should be used. This is quite
obvious if the two models are interpreted as flow models. However, one
must not disregard the fact that, at the present state of the theory,
neither full nor vanishing slot flow can be represented. So far, only
such flows can be calculated for which the downwash distribution along
a straight line segment is prescribed, or which may be characterized,
at least approximately, by such a downwash distribution. In this sense,
both models represent specifications for the calculation of the downwash
distribution rather than flow models. However, such a downwash distrib-
ution alone can characterize neither full nor vanishing slot flow, at
least in the case of the vertical step. If one wants to include the
influence of the slot on the lift distribution, there exists so far only
the possibility of investigating the conditions for steady flow and then
transferring them to unsteady flows - of course not without certain
questions.

I want to carry out this procedure for the model with the open gap,
and to show that the flow through the slot has no noticeable effect on
the lift distribution in a linear theory, that, therefore, the initial
model and the singly broken plate have, for a constant control-surface
deflection, the same lift distribution. This shows simultaneously that
the model with the open gap satisfies a very essential condition which
must be fulfilled by any model with aerodynamically-balanced control
surface, the condition that, for a fixed control-surface deflection, the
aerodynamically-balanced and the unbalanced control surface may differ
only :n the choice of the moment reference point.
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Model with the Open Gap

In order to prove the above assertion , we start out from the symmet-
rical double wing with a finite slot in the direction of the wing chord.
For this double wing, it is known (references 1 and 2) that for any
finite slot the vortex distribution within the scope of a linear theory
(to whichwe always limit ourselves) is independent of the position of
the control-surface axis of rotation. This applies even in case the
vortex distribution is actually placed on the mean camber line. Thus
the models in figures 2a and 2b have, in the sense of a linear-theory,
the same lift distribution although they are different with respect
to flow. Since this “equivalence” is valid for any finite slot, the
ltiiting process “slot approaching zero” may be performed; we under-
stand by slot here only the slot in direction of the chord. In this

limiting process, the model (2b) converges toward the singly broken
plate and the lift distribution, as can be easily shown, toward the

lift distribution of that plate. In contrast, the model (2a) converges

toward the initial model with the open gaps, and the latter therefore
has, in a linear theory, the same lift distribution as the broken plate.
Thus the slot influence makes itself felt only in these terms of higher
order.

This fact becomes understandable if one considers table 1 in which
the through-flow quantities for several control-surface chord ratios
and rearward positions of the control-surface axis of rotation are com-
piled. These values, kindly put at my disposal by.,Miss Ginzel, were

calculated according to the theory developed by Flugge-Lotz and Ginzel
(reference 4) . This numerical table shows the mesm through-flow ve-

locities V/dq to be of the order of magnitude ~, since ~ = 0.17.
This may be assumed to be the physical reason for the statement, proved
above in general, that the flow through the slot does not make itself
felt in a linear theory.

Table 1

Mean velocity in the slot of the model (la) for mgle of attack
and control-surface angle of 10o

@ dhR V/drp

0.25 0.5 0.18
.35 .46 .20
●35 ● 39 .18

2 = wing chord, 2R = control-surface chord, d = rearward posi-

tion of the control-surface axis of rotation, ~ = control-surface
angle, v = free-stream velocity, V = through-flow quantity in unit time.
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To sum up, one may say that the model with the open gap may be used
as the idealized model of an aerodynamically-’balanced control surface even
when it is required that.no flow should pass between fin and control
surface. Probably the slot influence, in case of cont”rol-surfs-ceoscil-
lations, is at least as slight, if not even slighter.

Model with Vertical Step

Finally, I should like to show that the model with vertica”l step
introduced by K&sner and Schwarz leads, for steady conditions, to the
same lift distribution as the model with the open gap if K&ssner’s and
Schwarz’ calculating procedure is carried out just a little more “exactly.”
K&sner and Schwarz, it is true, obtain considerably deviating results.
I shall show the reason; however, I want to emphasize beforehand that I
altogether reject their calculating procedure, including the one carried
out more “exactly.”’ I shall discuss my reasons later.

The model with the vertical step represents in Kfissner’s and Schwarz’
report the limiting case of the model with the oblique step. (Compare
fig. 3.)

The latter model leads to the model with
by the limiting process xl ~ xo.

The calculating procedure of Kfissner and

the vertical step (fig. lc)

Schwarz is
Birnbaum’ s method. One can apply the latter only if the
distribution is known. Obviously, there results for the

[

o -l<x<xl
w(x) = -v sin 7 for Xl<x<xo

where

7 = arc tan
(

%-xotanv

% - xl )

We split up this downwash distribution In the form

W.W1+W2

based on
downwash
latte”r

with

{

o (-l< x<x)
W1 = -vsiny(xl<x<l ?
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This division

( o (.l<X<XO)=

h-v siny+sinq)(”~<x <l)

precisely corresmnds to the division of the model
with the oblique step into two sing-~ broken plates made by K&sner and
Schwarz. Furthermore we put, as is customary, x . - COB ~, ~ =

COS ~, and Xl = -
cos(~ -%$

If one now takes into consideration

that the vortex distribution appertaining to the downwash distribution
w~ (reference 3) is

there results for the model with the oblique step by superposition the
vortex distribution

r5R(x) =+ v sin
{
2(Yl - q)cot : +

In ; - Cos(e
COS(G + q)

-v
)}

+*vsin7
[
- 2bRcot : +

for which the limiting process 5R~0 now may be performed without

any.difficulty. Since the last constituent converges toward zero,
there results, therefore, as lift distribution for the model with the
vertical step, that of the singly broken plate, therewith the same
distribution as for the model with the open gap.

How then is it possible that K&sner and Schwarz arrive at an en-
tirely different result? The reason is that Ktissner and Schwarz, at
the outset, apply a theory linearized for small flow angles. Thus, in

particular, they put sin 9’~ 7 and 7 _ ‘R -%v - a simplification
% - xl

which for xl + Xo evidently is no longer permissible. Due to this

simplification, the last term in the last equation still makes a con-
tribution although one of the factors vanishes.
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Although the calculating procedure carried out here a little more
exactly did yield a reasonable result, it must still be rejected since
the-suppositions for which BirnbaunQs theory is applicable are not
satisfied. This method is exact when the downwash distribution along a
straight line segment is prescribed. For the approximate calculation
of mean csmber lines, it may be used only when these lines deviate only
slightly from the straight line and when their curvature is inconsider-
able; for only then normals to the mean camber line and to the straight
line have approximately the same direction. Obviously this condition
is, in a very essential point, not fulfilled on the model with the verti-
cal step.

REFERENCES

1. Kleinw&chter, J.: Beitrag zur ebenen Leitwerkstheorie.
Luftfahrtforschung Bd. 15, 1938, pp. 127-129.

2. *“~ohngen, H.: Auftrieb und Moment der geknickten Platte mit Spalt.
Luftfahrtforschung Bd. 17, 1940, pp. 17-22.

3. K&sner, H. G., and Schwarz, L.: Der schwingende Fl&el mitaero-
dynamisch ausgeglichenem Ruder. Luftfahrtforschung Bd. 17, 1940,

PP* 337-354.

4. Fl~gge-Lotz, J., and Ginzel, J.: Die ebene Str6mung um ein
geknicktes Profil mit Spalt. Ing.-Archiv Bd. XI, 1940,
pp. 268-292.
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Figure l.- Control-surface models. aandc - Control surface with aero-
dynamic balance. b - Control surface without aerodynamic balance.
a and b have, for constant control-surface deflection,the same lift
distribution.

b

Figure 2.- Two double wings with equal liftdistribution.

-1 -— — x

Figure 3.- Control-surface model with oblique step.
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Discussion Following the Lecture of H. S&ngen

9

K&sner: S&ngen himself mentioned in his lecture that his deri-,> -.,
vatio-not unobjectionable. The assumption of a step--angle y . 900
contains a contradiction to the presuppositions of the linear theory.
This angle must absolutely be kept small at first. In my first report
concerning this problem (1937) and likewise in my second (1940), I there-
fore assumed an arbitrary small step angle. Only in Schwarz’ reDort
(Conference on Oscillation 1938) the angle y = 90° has been temporarily

introduced as a limiting value, but only for subsequent simplification of
an exact result for a practical purpose. It is absolutely imperative that
in the derivation the slopes of the mean camber line always remain (infi-
nitely) small, otherwise the linearized theory cannot be carried out free
from contradiction.

Addition at the time of the printing:

Altogether, one must keep all perturbation velocities small in order
to comply with the suppositions of the theory which would require, among
other conditions, also a smooth entrance of the leading edges of fins and
control surfaces into the flow. However, that is not done in most cases,
and thence result the contradictions mentioned in the first part of the
lecture. How an exact result obtained under adherence to the enumerated
presuppositions may be subsequently simplified for practical application
is another problem requiring separate treatment.

S~hngen:l Since the limiting process bR-+ O or 7 + 90°,

respectively, contradicts the presuppositions of Birnbaumts theory, I
rejected the results obtained in this manner. In my opinion, this is an
absolutely unobjectionable method. Kussner and Schwarz, on the other
hand, did not draw this conclusion. If K&sner says that he or Schwarz
perfomned the limiting process “only for the subsequent simplification of
an exact result for a practical purpose, “ the question still remains open
whether such a simplification is permissible. It is not immediately evi-
dent since the limiting process leads to the model with the vertical step
for which sin ?’ and tan Y obviously can no longer be replaced by y.
The motivation given by K&sner and Schwarz in the last report (1940)
where this limiting process is performed again, namely that bR is small

and that limiting values exist for the separate coefficients (except for
the lift of the control surface) invites objections. In order to make
this quite clear, I gave, in the second part of my lecture, the lift
distribution of the oblique step in a form for which even all coefficients

lEditor’s note: ,,Mr.S&ngen wrote this sunmary after becoming
acquainted with Mr. Kussner’s altered contribution to the discussion.

1.
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with bR ~ O tend toward limiting values so that the motivation as

given by Kfisstierand Schwarz could be used here also. However, the
coefficients obtained in this manner differ quite considerably from
Kussner’s and Schwarz’ results, although the lift distributions used in
both cases (different only in that I did not make use of the simpli-
fication - not permissible for large step angles - sin Y - 7, tan y ~ 7)
are perfectly equivalent for small step angles. The limiting process
bR-40 is, in my opinion, justifiable only by either showing that
even the perfectly exact calculation (for instance, by means of con-
formal mapping) leads to the same values as K&sner’s and Schwarz’
method, or else by showing that the values obtained by the limiting
process deviate by a sufficiently small amount from those for small
y’s. In the first case, the model with the vertical step would be the
flow model, whereas, in the second case, it would represent only a sort
of calculation model; however, to my knowledge, such an investigation
has not been undertaken so far so that the results obtained by means of
the limiting process at the very least must be regsrded as not proved.

Concerning the influence of the infinitely large disturbance ve-
locities at the edges, my opinion essentially differs from Kussner’s.
It is true that in the purely intuitive derivation of Birnbaum’s
theory, the disturbance velocities are presupposed to be small; however,
for profiles consisting of a series of straight lines,,this limitation
is unimportant since it can easily be demonstrated that a theory which
is linear for small angles leads to the same results as Birnbaum’s
theory. Thus, for instsmce, Keune’s perfectly exact calculation
(Jahrbuch 1937 der deutschen Luftfahrtforschung) for the singly broken
plate yields the same results as Glauert’s calculation which is based
on Birnba~ls theory. Contradictions in the results of the first part
of my lecture, as a consequence of the infinitely large disturbance
velocities prevailing at the edges, could, therefore, not p?,ssibly have
occurred and did not occur. Only certain deviations from Kussner’s and
Schwarzl results appeared.

K&sner: Doubts regarding the legitimacy of the sealed gap have

been uttered. Instead of discussing reasons or counterreasons, let us
calculate a numerical example.

Assume that on a wing with aerodynamically-balsnced control surface,
the total wing chord extends from -1 to 1, that the leading edge of the

control surface lies at 0.40, the control-surface axis at 0.60, and that
the slot width i: 0.02, that is, 1 percent of the wing chord (compare

fig. 3b in the Kussner-Schwarz report henceforth quoted as KS).
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Thus

11

-Cos qJ = 0.40.,

‘COS XR = 0.60

-Cos((p - ~R) = 0.38 (1)

7 is to denote the angle between the oblique line bridging the slot and
the x-axis.

In order to make the linearized wing theory applicable, displacement
from the x-axis and slope must be small. This means for us in this case
that 7 must be small, about

7S60 (2)

Hence follows, due to the known relation between heiaht of the ste~ and
control-surface amplitude,

From equation

D
Cos q - Cos x =

R

(2) then follows

c= Cos(ql - bR) - Cos T
Cos ql - Cos XR

36’

7

(3)

(4)

This magnitude of the control-surface amplitude we deem still sufficient
to star~ the flutter.

In any flutter calculation one has to investigate only the start of
flutter, since by avoiding the start of flutter, the entire process cm
be avoided. If one assumes 10o instead of 60 as the limit for the slope
of the mean camber line

7 < @ (2’)

C becomes

c~lc’ (4’ )

Our mean camber line is composed as usual of the singly broken
plate and the closed step. We limit ourselves here to the closed step.
(Compare fig. 3b in KS.) First, we regard the closed step as a doubly
broken plate composed of two singly broken plates. We then obtain, for
instance, for the coefficient

‘a
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1
fik-=

d {
~ (2.10599 + 0.8909b) (I- + T) + o.8295Ia + 0.2124& -

(2.07579 + 0.84g14a)(l + T)- 0.792670- 0.1961-]

= (1.510 + 2.09@(1 + T) + 1.842c0+ 0.81M i5)

This coefficient is, therefore, a difference quotient of the corre-
sponding coefficient of the degree of freedom c, taken at the points

0.40 and O.38. If we replace this difference quotient by the differ-

ential quotient at the point 0.40, we have before us the method we de-
noted in our comnon report as closed (vertical) step method. We obtain

for the coefficient ‘a
according to formula (26) in KS

fikd= (1.528 +2.07@(1+T) + 1.833m +0.793& (6)

There we suggested replacing the exact coefficient according to formula (5)
by the value according to formula (6). We should like to make here a new
suggestion as to how to improve the agreement considerably by a slight
modification of our method: If we insert in formula (26) of KS not the
leading edge of the control surface 0.40, but the center of the slot
-Cos qlm = 0.39, generally

-Cos Cpm= -

we obtain for k- the value
d ●

1

[ J
p Coscp+ Cos(cp - 5)

(7)

fik-= (1.510 + 2.09@(l + T) + 1.8420 + 0.811.u?
d (8)

thus within the scope of our accuracy the sane value we also obtained in
the exact procedure by superposition of two plates in formula (5). More

exact calculation shows differences of the order of magnitude 82 be-
tween equations (5) and (8).

For the steady contribution of the control-surface lift, we provide
a special regulation. In KS there was

#’ra* .2 k TSR + ~~(q)

=21n TsR - 2(cosT+ In sin2q)

= 2 In TsR + 1.14871
(9)
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The exact calculation as doubly broken plate yields

=.-. Yi21’-*-< 2 ‘~ ~ -
d

~R+2sinq

= 2 k TsR + 1.10644

Instead we newly suggest

#ra* =2 3nT~R.-

=2h_l TsR+

which sufficiently accurately

sin(p- Oin(ql -.5) ,2 .=. sin2”.
Cos ql- Cos(q - 5) - ()~-;

(lo)

c 12 sin q cot qm + in sin2 Tm

1.10635

agrees with equation (10).

( 11)

This example may show that the closed step represents a perfectly
usable instrument of air-force calculation. We note once more ex-
plicitly that in our work 7, the angle of the step, nowhere becomes

90°, that in this example 7 was selected evens 6° or 10°, respective.
ly, and that, therefore, the designation “vertical step” signified only
a brief catch -word for a purely formal-mathematical method which is to
be explained by the customary exaggerated representation of the Oscil-
lation deflections In schematic figures.

The comparison with measurements performed in 1938 by the second-
nsmed author shows that, for smaller, graphically negligible step width,
the equivalent system correctly renders an essential characteristic of
the balanced control surface, namely, the very pronounced pressure rise
toward the leading edge of the control surface which is known to be
accordingly less pronounced in equivalent systems with a break or with
open gap. The freely selectable parameter step width
tation of the steady control-surface moment about the
axis to an experimental value - a measure which seems
according to the ex~sitions of this conference.

At this opportunity, we once more draw attention

permits the adap-
control-surface
very desirable

to a misprint in
our report. In Luftfah~forschung vol. 17, 1940, page 348, top, should
read -@~8 instead of f#l~8.Mr. Dietze kindly pointed out to us this
error.

Quessel: The first calculations with aerodynamic balance, the re-

sults of which have been given in R~l’s lecture at the Haburg Confer-
ence on Oscillation ,,,1938,were performed with air forces determined at
the instigation of Kussner in the following manner: In the detemnination
of the air-force moments acting on the aileron, we extended the



14 NACA ~ 1306

integration beyond the control-surface axis A in the direction of the
leading edge of the wing to a point B, whereas the profile, as custom-
ary, was considered as a singly broken plate with the break in the
control-surface axis. We did not deem it at all important that the
point B should coincide with the leading edge of the control surface;
we rather regard the straight line segment A-B as a parsmeter inde-
pendent of the shape of the aileron which is to be determined in such
a manner that one obtains for steady conditions the same moment about
the control-surface axis, due to a control-surface deflection, as for
the actual control surface. In this manner, a parameter which is very
si~ificamt for the process of flutter, nsnely, the air damping, is
assimilated to actual conditions which is more important than the imi-
tation of the geometrical relations. The calculation mentioned dealt
with a qualitative investigation of the influence of the aerodynamic
balance; therefore, we assumed perfect aerodynamic balmce end de-
termined the straight-line segment A-B so that the steady moment of the
air forces about the control-surface axis due to a control-surface de-
flection disappeared. In other air-force theories as well, a suitable
parmeter must always be left open for approach to the relations under
steady conditions if they me to be applied to flutter calculations.

In his comparison of the calculation results according to the var-
ious air-force theories, Dietze started out from the geometrical re-
lations and obtained considerable differences. Had Dietze correlated
the air forces of the different theories according to their steady com-
ponents, that is, had he determined for each theory a suitable parsm-
eter so that all theories would, for steady conditions, result in the
same moment about the control-surface axis due to control-surface de-
flection, the differences in the calculation results according to the
various theories would not be large. Then the industry should not have
to pay any heed to the sepsrate air-force theories which would be of
great advantage.

Schwarz: In
was presupposed.
mean csmber lines

the case I reported on, a continuous mean camber line
The theory can be transferred also to discontinuous
as I have already mentioned in my lecture.

Stender: One of the figures showed that the substitution mean
camber lines had another nose chord, obviously to attain moment coef-
ficients for control-surface angles which correspond to those of the
actual profile formj however, the influence of the angle of attack is
more important. The substitution nose chord ought to be selected so
that approximately neutrality of the control surface with respect to

the angle of attack prevails.

Voigt : Concerning the remarks by Stender: In wind-tunnel tests,
we arrived at different results. According to them only the aerody-
namic balance compared to the balance of control surfaces is significant.
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Dietze: Concerning Quessel’s expositions:

1. A comparison between the separate concepts in such a manner—,,
that, for equal control-surface chord-ratio and equal position of the
control-surface axis of rotation, an equal degree of balance also exists
at the control surface cannot be made because of the very different
emphasis on the balancing effect in the separate concepts and because
of the limited variability of the balancing effect by the parameters
still at disposal. For instance, in the concept with breaking edge
shifted rearward, the same degree of balance as for the concept with
open gap can be brought about only when the control-surface lead’inged,ge
is made the breaking edge; then, however, one can no longer speak of a
concept with breaking edge shifted rearward. Furthermorej for the
values for control-surface chord ratio and position of the control-
surface axis of rotation presented here, in no case (that is, by m
suitable selection of the step width) may the ssne balancing effect be
obtained by the concept with oblique step as for the concept with open
gap. (That, however, such an agreement might after all be possible
occasionally, for other chord ratios and positions of the sxis of ro-
tation, is shown, for instance, in fig. 4.)

For average degrees of balance, it will usually be possible to
choose between two, more rarely between three concepts. For higher
degrees of balance, the concepts with open gap and with closed verti-
cal step are usually the only possibilities left.

2. The plotting of the control-surface moment against the re-
duced frequency (compare fig. 3) demonstrates that merely the part
which is in phase with the motion shows essential differences in the
application of the various concepts, and that those differences are
almost independent of the frequency. For equal steady degree of balance,
the moment curves of the different concepts would almost coincide. In
that case, the separate concepts probably will not differ in practice,
either, in their effect on the additionally occurring air-force terms
(total force, total moment, etc.) and on the critical velocity.

Tr&nslated by”Msry L. Mahler ‘
National Advisory Committee
for Aeronautics
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II: AERODYNAMICALLY EQUIVALENT SYSTEMS

““FORVAtiOUS FORMS OF CONTROL SURFACES WITHIN ..

THE SCOPE OF THE TWO-DIMENSIONAL WING THEORY

By L. Schwarz

Abstract

After a survey of the present state of the theory of the oscil-
lating wing, the equivalent systems so far suggested for wings and
control surfaces without and with aerodynamic balance are discussed.
Following, it is shown how such equivalent systems may be constructed
from experimentally obtained measurements of unsteady pressure distri-
butions. Finally, a method of calculating unsteady pressure distrib-
utions from suitable steady pressure-distribution measurements is—
indicated.

1. Summary of

The two-dimensional problem of
some sort of close at present. The

the Theory

the oscillating wing has come to
problem consists in determining the

pressure distribution occurring under the influence of the motion of the
fluid at the wing surface, in case of a prescribed harmonic deformation
of an infinitely thin wing. Under the known assumptions which permit
a linearization of this aerodynamic problem, the solution is as follows:

P

v

v

CD

x

t

z

w

II

the customary notation, let

the air density

the free-stream veloclty

the angular frequency

the (imaginary) reduced frequency

the coordinate in direction’of the wing chord

the time

the harmonic deformation

the downwash

the pressure distribuf!ion

I
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The downwash then is

NACATM 1306

and the pressure distribution

and

T(-im) =
-i~(2)(-ti) + Hl(2)(-iu)

iH#)(- ia) + hJ2)(-@

that is, nothing else is required now for determining the pressure
distribution from the deformation but integrations, and since forces
and moments also may be derived from the pressure distribution by inte-
grations, all aerodynamically interesting quantities my be found by
integration.

In every application of the theory, there arises the basic problem
of what mean camber line to substitute for the prescribed wing profile.
The discussion of this question is in full swing. Following, the mean
camber lines or, as we will call them conforming to the custom in other
parts of mechanics, the equivalent systems treated so far will be com-
pared. The discussion of basic problems may be limited to the system
wing - control-surface.

●

8
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2. Equivalent Systems for Wings with’Control Surfaces

and Amiliary Control Surfaces without Balance
—

In this case, one chooses as mean camber line of the profile the
broken line. If, moreover, an auxiliary control surface is present,
one has instead the doubly broken line.

Within the scope Of linear theory, it does not signify a limitation
that the mean camber line consists of series of straight-lines even
though the.center line of the profile, for instance a wing with S-
shaped camber may be by no means straight. If the S-cambered line in
figure 1 performs oscillations, this motion may be composed of the S
line at rest and the oscillations of the chord. We need not be con-
cerned with the first portion which is steady, ~d the treatment of
broken lines is generally known.

A sharp break in the mean camber line is the cause”of a singu-
larity of logarithmic character in the pressure distribution. It iS

desirable to avoid such infinite pressure points in theory, since ifii-
nite pressures cannot occur in reality. Thus one has to find reasons
for slightly altering the mean camber line. A few simple appropriate

deliberations may be mentioned.

Rounded-off break.- If the boundary layer is visualized as a layer
actually laid around the profile while outside the fluid flows in a
potential flow, the outer bounding of the boundary ~ayer represents the
profile as compared to the potential flow “outside. Obviously, the

corner of the original profile is, therefore> “padded” by the boundary

layer. The boundary layer thus has for the broken line ‘he effect of
the sharp break being rounded.

We take (compare fig. 2) for the rounding a parabolic arc which is
tangent to the two sections of the broken line. We assume the break at
a, the beginning of the rounding parabolic arc at a - f. It then

adjoins for x = a + f the deflected part of the straight line, so that

the width of the rounding is 2f. The deflection of the bent part of

the straight line is assumed to be C. The appertaining pressure distri-

bution is to be determined.

The calculation will be formulated so that we may further utilize
it later on. If pressure distribution for new mean camber lines are
calculated, these c~ber lines should not only be appropriate for the
respective purpose, but sho~d also fit into a reasonable BYStWIIati-
zation of the possible mean camber lines. We introduce the followlng

mean csmber lines:”
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{

o’ for - lgxga
Fr(a; x) =

(x - a)r
r=l,2 . . .

for as X=1

Fl(a; x) then is the well-known series of straight broken lines.

Fr(a; x) for r= 2,3... originates if the rectilinear mean camber

line is bent up behind the point x = a h the form of a quadratic (cubic
or higher) parabola. (Compare fig. 3.) The introduction of these mean

csmber lines Fr(a; x) is advisable because - as may be noted here

without proof - from them any arbitrary piecewise rational mean camber
line may be obtained by super~sition for various values of r and a.

In our case of a series of straight lines rounded according to
figure 2, the deformation is expressed by mean camber lines of the type
F2 :

[
CF

J
z=~2(a- f;x)-F2(a+f; x)

The appertaining pressure distribution is therefore found easily if the
pressure distribution ~ belonging to the mean camber line F2(a; x)

is known. If, as is customary, angle coordinates are introduced

(x=- cos e, a = - cos Q, II is:

II =: pvpei~t[(l + T)III + (I + T)% + 113 + ui114 + @115]

*
in which

@
III = 02 cot ~

112 = Oppcot :

113 = - 203cot~ + k(yt - (p)sinG + 4(COS q - cos G)L(G,(p)

114 ‘ -@4 Cotg+ 4(II -cp)sin G(cos q - COSG) +

2(Q2 - @3)sin 8 + 4(COS Cp - cos @)2L (@)q)



*

The functions

’22 is newly

*22 =( Yr-

02, 03, fQ4, and L( ~, CP) are known from reference 1,

introduced. It is assumed to signify:

(P) ; ) i ‘inq(++Cos‘)(4+Cos‘)+Cosq+cos% +-

3* Equivalent Systems for Wings with Control

Surfaces with Aerodynamic Balance

Several suggestions have been made for this type, for which the
appertaining air forces are, to the greatest part, already tabulated.
I enumerate those suggestions in the succession in which they were put
forward.

First Suggestion (K&sner . - The mean camber line is rectilinearly
continued from the leading edge of the wing over the slot to the control-
surface axis and is broken only behind it. (Compare fig. 4.) ‘his model
is usable for those - not too frequent - profile forms where the nose of
the control surface protrudes only slightly from the total profile al-
though the control surface is deflected. Calculations for it have been
performed first by the Henschel firm, later by Dietze in Forschungsbericht
Nr. 1262.

Second Suggestion (K&sner). - The essential characteristic of this

suggestion 1s that the slot is bridged by an oblique line connecting
the trailing edge of the fin and the leading edge of the control surface.
(Compare fig. 5.) The limiting process in which the slot width is made
to approach zero is formally carried out as far as practicable: for
numerical values, see reference 1. At this opportunity, an error in
that reprt may be corrected: On page 348, top, table 3, line 1, column

3> o~~ should read ‘#118. The numerical VaheS of 018 are therefore

negative, not positive, as indicated there. We are indebted to Mr.
Dietze “for bringing this to our attention.
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Third Suggestion (S6hngen) . - Here we operate with a discontinuous

mean camber line. We arrive at it by assuming a mean camber line each
for control surface and fin separated by the slot (tandem arrangement) ,
and then going to the limit of zero slot width, compare figure 6; for
numerical values, see reference 1.

* Fourth Suggestion. - The mean camber line is assumed to run recti-

linearly in the fin and also in the control surface behind the axis. Let
a parp.bolic arc be inserted between control-surface axis a and leading
edge of the control surface k which at a is tangent to the rectilinear
part of the mean camber line of the control surface. (Compare fig. 7.)
The smplitude of the control surface is assumed to be C. This mean
csmber line then is expressed by the functions Fv”(a;x) introduced
above as follows:

z=-
[

C Fl(k;

The appertaining pressure
pressure distributions of

.

1
x) + F 1~ ~(a; x) - F2(k; X)

a-

distribution is calculated from the known
F, and Fp.

I+* Experimental Mean Camber Line

All suggestions which have become known so far amount to replacing
the profile by a mesm camber line which, on one hand, renders the profile
and its downwash as well as possible, and is, on the other, of the simplest
possible form. The arbitrariness inherent to all considerations con-
cerning correct selection of the mean camber line so far reveals itself
in the inaccurate mode of expression above.

Now, we will proceed in reverse. Conclusions are to be drawn from

the pressure distribution - which we assume as experimentally prescribed -
to the mean camber line and downwash, respectively, on which it is based.
The required apparatus of formulas is developed below, Possibly, certain
empirical rules for the selection of mesn camber lines may be gained by
such an evaluation of measurements.

If, besides the designations already used, CDr is introduced for
the real reduced frequency, there results for the downwash:

$
1

W(X> t) = -J=
2Yrpv -1

m(E, t)g(u#x- E)) M
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there in:

i’
‘J

or

f

-iZ ‘eit4t
... g(z) =+ - ie

-rnt -

Re g(z) = ~ - sinz Cilzl+cosz
()
:,+siz

Im g(z) = - Coszcilz]-sinz
()
;+siz

Values of these functions accurate to four digits are calculated and
indicated in a planned research report. The values for

Vf
appear in a report by Possio (reference 2) under the designation - _

W

and - k for the Mach number L = O.
au)

Since the deformation z and the downwash w are in the linear
differential relation

z is not unequivocally

‘=%+Vg

determined by w. This is clarified in the sim-
plest manner by considering the “’zero deformation”, that is, such defor-
mations as result in the downwash O. They are, as far as they are
harmonic:

Z . c~ei~t e- . c~e+(x-vt)

manner. The curve z = lCvlsin (up),

2fl is dram on a filmstrip and the—>
%
at the free-stream velocity v. One
line which is visible at the location

They may be visualized in a stiple

thus a sine c&ve with the period

latter is moved along the x axis
now observes that part of the sine
of the wing, that is, from x. - 1 to x= 1. If one lets the wing

deform in such a manner that its mean camber line always coincides with
this section of the sine line, it obeys the law of motion just indicated
which guarantees always vanishing downwash. Such a deformation may be

superimposed on any arbitrary profile deformation without any change in
the downwash and, therewith, in the aerodynamic reactions.
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line
Except for the addition of such a “zero defo~tion” the
then results from the pressure distribution as follows:

therein

!
z

f(z) = e-iz(l - iz)
eit

dt+l
T-m

mean camber

or

R f(z) = (COS z - zsinz)Cilzl”+(sin z+zcosz)
()
X +Si z + 1
F

Im f(z) = - (Si.nz+ zcosz)ci lzl+(cos z-z Sinz)
(~’ ‘i ‘)

The values of these two functions also are calculated within four digits.

5. Obtaining the Unsteady Pressure

Distribution from the Steady One

In view of the difficulties impeding theoretical comprehension of
the air forces which, for instance, still oppose the experimental de-
termination of unsteady pressures, one should not reject the idea of a
possible utilization of steady measurements in the wind tunnel for the
unsteady problem by means of a theoretical method. For this purpose,
we shall transform the theoretical result, as it was analyzed at the

beginning of this representation, in such a manner that in the final
formula the mean camber line does not appear at all or is only little
effective. It is true that, for its derivation, it must be assumed for

certain that an oscillating mean camber line may be adopted for the
oscillating profile. For simplicity, we shall at first presuppose the

latter to be continuous.

Let z(x,t) = Z(x)eivt signify the oscillating mean-camber
line, thus z(x) the mean camber line in maximmm deflection. Js(x,

will be the unsteady pressure distribution of the oscillating mean
camber line Z(x,t)> ~(x) the steady pressure distribution of the

mean camber line in the maximun deflection ;(x). According to the

integral representation for the unsteady pressure distr-ibution:

t)
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II(x,t) = ~$e
f

ivt 1 [mz(~) + Zr(~)]K(X,~)d~

.- -1 ,.

where the kernel K(x, ~) is a well-known function. On the other
hand, the mean camber line z(x) may be expressed by the steady
pressure distribution connected with it:

2&2fII(~) *
z’(x) = —

If this is introduced into the formula for II(x,-t) the mean csmber
line ~ (x) is eliminated and replaced by the steady pressure distri-
bution II(X) and a few functions and constants derived from it, A(x),

!
1

pv2A(x) = II(x) dx
x

1
P#M(x) =

1
XII(x) dx

x

/

1
p#cl = $ II(x) ax

-1

1

!pgc2 . :“ XII(X) dx

-1

PV2C3 . :

r

..—
II(x) ln(2il - X2) dx

-1

To within factors, A(x) is the lift and M(x) the moment of the
profile section from the point x to the trailing edge, the latter
referred to the wing chord center. However, M(x) will appear only in
the combination M(x) - xA(x), which signifies the sane moment, referred
to the point x itself. To within factors, c1 and C2 are lift and

moment coefficients. For C3, we do not have physical interpretation.

a ... ... , . ... .... .. , ,, ,,. .-—..— ! ! ! ! ,,, .. —... —.-- . ..— — . .———. — —
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As the result of the described calculation (in which, besides, at
point the presupposition of the constant mean camber line must be——

used), we obtain the following new formula
disbribution:

for the unsteady pressure

[
CD(1+T): ~(l) + Z?(-1) - C~ -ql$++

[
r]AI-I(X)- CILJJ+

&R+2C,(;-arc;~ + - + +
(-f

K(# z(l) +i (-1) - C3 - c1 ph-x?+

(Clx - C2)

J

(:- arc sin x) 1
+M(x) - XA(X)

The correctness of this formula
bending (vertical displacement)
angle oscillation. The bending
because this will help in understanding the formula.

was checked for the known cases of
oscillations, of ang”leand of control-
oscillation will be briefly discussed

For the latter ~(x) = O because the mean camber line is a
section extended in the direction of the approach flow. Consequently,

cl) %> C3
as well as the functions A(x) and M(x) are zero, and

II(x,t) is reduced to the terms containing ;[E(l) + @)]

which contribute exactly the pressure distribution of a bending oscil-
lation.

These terms in our formula are of interest because they still
represent, as it were, a rudiment of the otherwise eliminated mean cSmber
line. Their appearance, however, is easily understandable: If one

superimposes a bending oscillation on an arbitrary oscillation, II(x)
and the functions and constants formed from it A, M, cl, c,, C3

remain unchanged. [()Without the terms with 1 ~ 1 + ~ (-l] the
5

pressure distribution of an arbitrary oscillation would therefore not
change due to the addition of a bending oscillation; they, precisely,
cause the pressure distribution of the additional bending oscillation
also to be contributed.

. . ,,
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Interpretation on the Profile. - Whereas, so far all considerations

were made within the scope of linearized theory, our result now is to
be interpreted also for the case of a thick profile. This is possible
because the mean camber line no longer enters into the final formula,
although with an exception - the quantities ~(l) and ~(-1).
These, however, are no longer dependent on the shape of the mean camber
line and may be taken from the profile without assumption of a mean
camber line, since they are nothing else but the amplitudes of leading
and trailing edge, respectively, of the wing. Thus, the problem is
mere ly: What is the significance of the ‘pressure distribution” TI(x)
on the profile?

In order to make our deliberations more illustrative, we shall
visualize below a profile with oscillating control surface. The control
surface deflection will be denoted by U; generally a will be called
an oscillation or deformation parameter.

Moreover, a preliminary remark: “Pressure” will, as is customary
in linear theory, always signify the difference between the pressures
on upper and lower side of the profile.

If a profile is prescribed, the steady flow which sets in when the
profile is at rest also is superimposed on the oscillation process.
The steady flow, however, is not contained in theory by the oscillating
mean camber line. This is concluded, for instance, from the fact that
in the case of the deflection u = O the mean camber line is a straight
line and contributes steady zero pressure. Or let us visualize the
oscillating S-shaped mean camber line mentioned before. According to
the principle of linear superposition II(x) is, at any rate, the
difference between the steady pressure distribution II%=(x) - which

corresponds to the maximum

for the state of rest a =

II(x)

deflection ~u - and TIo(x) which appears

o

= ‘%ax(x) - no(x)

Ha (x) is to be, at least in theory, a linear

we also may write

II(x) = [)arra( x)
%nax.~a=O

L

function of u so that
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that is, IT(x) is, except for
of the pressure distribution of
parameter. Correspondingly, we

NACA TM 1306

a constant factor, the partial derivative
the profile according to the deformation
obtain, except for constant factors.

A(x) and M(x) from the lift and the-momen~ for the profile sectibn
from x to the trailing edge if we differentiate partially according
to the deformation parameter a. Analogously, there results for c1

and C2

2%HX %
C2

‘7X

with Ca and Cm signifying the customary lift and moment coefficients,

the latter referred to the wing chord center as point of reference.
For c

3
there is no more illustrative interpretation than the one given

by the qualifying equation itself.

Thus the following method is advisable for obtaining II(x):

The profile is provided with pressure orifices which, as far as
possible, are opposite one another; the pressures at the orifices are

measured for several angles of attack a of the control surfaces, for

instance, for a.O. 0 and for two positive angles of attack al, ~,

and two negative ones a3) a4” If one then forms the difference between

upper and lower side for the pair of orifices at the point x, the

pressures IIa(x) for the various control-surface deflections a = a.

..0 ak result. One then plots for each pair of measuring stations

xIIa(x) over a and connects the five points obtained by a curve

which in linear theory should be a straight line. Through the direction

nf a faired curve or, better, of the tangent for a.o one then obtains

bllu(x) thus sfter multiplicationby ~a the desired quantity
~’
II(x) . From this function of x one obtains by integration

A(x), M(x), cl~ c2> c3 and finally, by application of the above

formula, the unsteady-pressure distribution ~(x~t)o

To SLUUUp: In order to avoid the arbitrary fixing of a certain

mean camber line, which of itself is necessarY for everY application of
the theory, the result of the theory was tr~sfo~ed in such a ma~er
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that instead of the mean camber line only quantities will enter into
the final formula which can be simply interpreted on the profile.
Aside from the amplitudes of profile nose and trailing edge, they all
are derived from the differential quotient of the steadypressure,,
‘distribution according to the deformation parameter. This function
along the wing chord may be determined according to the above method by
evaluation of wind-tunnel tests. Thereby, it becomes possible to per-
form wind-tunnel tests rather than to fix to a certain degree arbi-
trarily a mean camber line.

Our considerations so far are based on a continuous mean camber
1ine. For discontinuous mean camber lines which correspond to the
limiting case of a tandem arrangement for zero slot width, our formula
for II(x, t) can be easily modified: 1 If a is such a point of dis-
continuity so that Z(a - O) # Z(a + O), one has to add on the right
gide the

1

..

additional term =
1

Z(a + O) - Z(a - O)
r . >

(llst,ep (aY“ X,t) - ~ llbending (xjt
J

where llbending (X,t) signifies the pressure distribution of the

bending oscillation, whereas IIstep(a;x~ t) appertains to the
oscillation of the control surface step (with open step for x=a).
ThuS

{ lJ~~-mCSina+
IIstep(a;x,t) = pv2eivt ~ (1 + T)u

1

[
~~ +m2A(x,a) - 12 fr;p (~+

-1

[

‘22(: +h -—
——

- arc sin
]

x2 + 2(x - a)A(x,a)

The decision as to whether to adopt a continuous or discontinuous mean
camber line must be made at the outset. The method described above
does not give information on that question.

Since the parameters of our formula are taken from the experiment,
infinite pressure yoints no longer appear in the pressure distribution

%’he following three formulas have been added only for the printing.
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/
l--xexcept for the leading edge where — becomes infinite. Since
1+X

rinfinite pressure points are better avoided, the function ~

could be replaced by the derivative of the pressure distribution of the
profile with respect to the angle of attack of the total profile since
the latter, as is well known, is the pressure distribution of a flat
plate at an angle of attack. However, this suggestion only has the
character of an additional hypothesis.
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Figure 1.- Mean camber line with S -camkr.

Figure 2.- Mean camber linewith rounded break.
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Figure 3.- Mean camber line Fr(a;x) for r = 1 and 2.
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Figure 5.
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Figure 6
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Figure 7
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Discussion Following the Lecture of L. Schwarz

Groth:- Concerning the problem of the measurement of unsteady

pressure distribution, I should like to make the following retirk:

In the high-speed wind tunnel of the LFA Braunschweig, one uses as
special measuring method the interference method which permits, accord-
ing to the interference principle of Mach-Zehnder, density measurements
on bodies in a flow. Since light reproduces, free from inertia, any
change In the flow state, the performance of pressure distribution
measurements is possible also for unsteady processes. We therefore pre-
pared as one of the first problems for research interference measurements
on the oscillating wing where a wing placed between end plates fixed in
space is made to oscillate in pure angle or bending oscillations. The
interference ‘photographs then show the pressure distribution existing
in the separate states of the oscillating motion snd permit statements
on the development of the boundary layer on the profile. The first
measuring results may probably be expected at the end of this year. On
the occasion of the first testing of the interference method in a small
provisory wind tunnel, we were able to make sure that reliable inter-
ference photographs on the oscillating wing are possible.

Leiss: In adapting a mean camber line to steady measurements, one
has to pay attention to the fact that siot and separation influences may
have entirely different effects for steady and for unsteady conditions.
According to deliberations discussed occasionally by other investi-
gators, an adjustment to steady behavior might lead to a mean cuber line
which, for unsteady conditions, might stress too heavily for instance
the slot influence.

K&sner: The vortices at the slot of the oscillating wing will
also appear for small u values; we do not know what happens in case
of large u values. Of course, we shall make measurements and then
compare these measurements with the theory.

Stender: I made before, elsewhere, the suggestion that the influ-
ence of a sudden deformation of the tail unit profile by control-surface
deflection on the pressure variation at different points of the tail
surfaces for high Mach numbers be investigated. An actuation of the
control surfaces probably takes effect in the region of the tail unit
nose only much later.

.+- , , ,., . . . . . ... —
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I believe that one must also consider the flow about the trailing
edge appearing for every control-surface deflection because it has a
phase mgle relative to the control-surface deflection. Perhaps one
may, as an expedient, make the assumption of a slight periodical
bending of the trailing edge.

Translated by Mary L. Mahler
National Advisory Committee
for Aeronautics
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III . COMPARATIVE CAICUIATIONS

BAL&NCE OF CONTROL

CONCERNING

SURFACES

AERODYNAMIC

By F. Dietze

I. Preliminary Remarks

A number of approximation formulations have been developed in order
to include aerodynamic balances of control surfaces in flutter calcula-
tions; these formulations are based on widely different ideas - regarding
consideration of the velocity distribution of the oscillating wing in
the forward part of the control surface. At present, a reliable answer
to the question of how far these various interpretations correspond to
actual conditions in the individual case is not possible, due to the
lack of suitable measuring data on unsteady air forces and air-force
distributions. Thus the present investigations are, chiefly, restricted
to a comparison between the various concepts, with respect to their
effect on the air forces and on the critical velocity. In order to ob-
tain at least a certain criterion regarding the reliability of the
different concepts, an exsmple for flutter of a wing with aerodymunic
control-surface balance (investigated in the wind tunnel by Voigt) was
checked by calculation according to the different concepts.

II. Characterization of the Concepts

Figure 1, right, shows sketches of the profile mean csmber lines
on which the individual concepts regarding consideration of the velocity
distribution in case of fixed fin and rotating control surface are based.
On the left a few control-surface structures are indicated in order to
illustrate how the separate concepts could be coordinated to actual con-
struction types, merely on the basis of design and mounting of the con-
trol surfaces. The case of the control surface without aerodynamic bal-
ance has been included only for comparison.

Individually, the concepts are characterized as follows:

Concept a (older concept of K&sner): The break of the wing is

assumed to lie within the control-surface region. Thus the normal ve-
locity components are included, according to the actual kinematic bound-
ary c-onditions, only in the fin part and in the
behind the break of the control surface; in the

b

control-surface
control-surface

part
part in

.
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front of the break (of the control surface) the normal velocity com-
ponent is taken into,consideration according to the kinematic conditions
of the fin.

Cohcept b: Here the model for the velocity distribution shows am
oblique step in the front part of the control surface, so that the
normal velocity components near the leading edge of the control surface
are included only partly according to the kinematic boundary conditions.
The rearward point of break (tip of the step) should lie - whenever
possible - at such distance behind the leading edge of the control
surface that the slope of the step is of about the same order of magni-
tude as the control-surface angle of rotation.

Concept c (S~hngen): The normal velocity components are here fully

included according to the kinematic boundary conditions. As S6hngen has

shown, the flow through the slot contributes for steady conditions to
the total lift; these contributions are small of higher order. Since it
is assumed that this influence takes rather even less effect for unsteady
conditions, it is here also neglected.

Concept d (K&sner-Schwarz): This concept is characterized by a

mean csmber line with closed vertical step. Terms resulting in infi-

nitely large amounts appear in the air-force law. According to a sug-

gestion by Kfissner, these infinitely large amounts are to be replaced
by finite amounts from comparative steady calculations.

So much for the present for characterization of the individual
concepts. It is, of course, perfectly feasible to vary or to combine
these concepts. A variation may, for instance, be made by replacing

(in the design with oblique step) the rectilinear connecting piece be-
tween fin and control surface by a connection with several breaks or by
closing the transition from fin to control surface by a smooth curve
(without break).

A few parameters for the separate concepts are still open, for
instance, position of the point of break) step width) etc. These param-
eters may be determined by bringing on conformity with appropriate
measuring values in the air forces. Following, such a possibility will

he discussed in more detail.

III. Effect on the Air Forces

The comparison between the individual concepts with respect to
their effect on the air forces is performed for the air-force distri-
bution over the wing chord and for the control-surface moment, both for

●
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fixed fin snd harmonically oscillating control surface. The control-
surface chord ratio is for all concepts T = ().2; the control-surface
axis of rotation which simultaneously is the axis of reference for the
contro-l-surface.-momentlies at one-fourth of the control-imiface chord
behind the leading edge of the control surface.

The parameters still disposable in the various concepts were fixed
as follows:

[ I 1
I Concept I Parameter at disposal I

1

Break edge shifted rearward Break edge in the control
surface axis of rotation

Oblique step Step width = 4 percent of

I I the control surface chord III Open step Point of rotation of the mean
camber line of the control

Closed vertical step
surface in the control-
surface axis of rotation

a. Air-force distribution

In figure 2 the air-force distribution due to control-surface ro-
tation is plotted against the wing chord for the different concepts.
The figure at the left shows, by way of comparison, the steady distri-
bution, the two at the right show the unsteady distributions.

All interpretations result in about the ssme air-force distribution
with respect to direction; only for the interpretations with oblique
and vertical closed step narrow pressure peaks occur additionally which
are, however, without significance for the total lift. In the last
named two interpretations the pronounced reduction in the fin region of
the air-force part that is in phase with the motion is particularly con-
spicuous. For steady conditions and for the part in phase with the
motion, the pressure distribution of the concept with open step does not
differ at all from that of the unbalanced control surface.

●
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b. Air moment on the control surface

In figure 3 the control-surface moment due to control-surface ro-
tation, for the various interpretations, is plotted against the reduced
frequency. The control-surface moment therein is referred to the con-
trol-surface axis of rotation.

The reduction of the control-surface moment is com~sed chiefly of
two parts:

1. The control-surface moment is reduced, because the sxis of
reference o.fthe moment, the control-surface axis of rotation, is
shifted rearward. The reduction here is expressed in the distance of
the curves of the unbalanced control surface, for instsmce from the
curves appertaining to the concepts with open step: for the part in
phase with the motion as well as for the part which is out of phase
with respect to the motion by 11/2.

2. The other component stems from the different consideration of

the velocity distribution in the forward part of the control surface
for the individual interpretations and is expressed in the mutual
distances of the curves of the balanced control surface. It iS
noteworthy that this influence chiefly takes effect only in the com-
ponent which is in phase with the motion, and that the differences
between the separate interpretations are almost independent of the
frequency. This fact yields, for practical application, the following

rule for mathematical representation of the aerodynamic control-surface
balance.

AS long as no reliable, unsteady air-force measurements exist, a

selection among the different concepts concerning the different control-
surface forms with aerodynamic balances csm be made - at least approxi-
mately - solely on the basis of the control-surface degree of balance
for steady conditions.

Figure k shows an example of how such a selection may take place.
The steady moment coefficients “@d7R of the control surface due to

control surface deflection are here compiled for various forms of nose
development of the control surface. The value dc~ dyR = 0.01 corres-

dponds to the unbalsmced control surface. The measu d results were
taken from the report Fo 187 entitled ‘hmentenmessungen tiWindhnal
an 22 verschiedenen Rudern” (Moment Measurements in the Wind Tunnelon

22 Different Control Surfaces) in agreement with the Hamburg Flugzeugbau
BIohm & Voss, who performed the measurements. The interpretations with
break shifted rearward, with oblique step and with open step were cb-
ordtiated to the separate control surfaces ti such a msmner that the
individual interpretations result in the same degree of balance as the
control surfaces.
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In first approximation, one may derive from this investigation
roughly perhaps the following rules for use in a selection among the
individual interpretations:

1. The interpretation with rearward shifted break will always be
preferable when - as is the case for the first two control surfaces -
the control surface nose does not protrude from the contour line of the
profile.

2. The interpretation with open step will always be preferable
when - as is the case for the last two control surfaces - the .control-
surface nose protrudes even for small control-surface deflections.

3. A medium type of construction is effectively included in the
concept with oblique step. One has only to be careful not to let the
step become too steep. In a dubious case, the concept with open step is
preferable.

Iv. Effect on”the Result of a Flutter Calculation

a. Variation of the position of the c~trol-

surface axis of rotation

Figure 5 shows the critical velocity (determined by calculation)
of a model which Cm flutter with the two degrees of freedom - wing
rotation smd control-surface rotation in the sense of the two-dimensional
problem - plotted against the position of the control-surface axis of
rotation. It was not known what degrees of balance existed at the con-
trol surface of the model for the separate positions of the axis of ro-
tation.

In the diagram, two further test points are plotted which only are
to show that the calculation result makes sense. Figure 6 shows a
systematic comparison of -caktiat@n and test.

The values for the dimensions as well as the mass and stiffness
values of the model investigated are compiled in table I.

For the parameters at disposal in the individual interpretations,
the sane numerical values were selected as in the previous investigation.

I

h>I The first remarkable fact in figure 5 is that all interpretations

\ render the influence of the balancing effect on the critical velocity
I in the sane sense - in this particular instance in the sense that with

increasing degree of balance the critical velocity increases. If the



40

balancing effect is overestimated,
terpretations with open and closed
shown in the present example - may

NACAIJW1306

as obviously happens here in the in-
vertical step, the calculation - as
arrive at freedom from flutter where—

actu-ally the system still is subject to flutter.

TABLE I. - DIMENSIONS AND CHARACTERISTIC VALUES

OF THE INVESTIGATED MODEL

Wing chord . . . . . . . . . . . . . . . . . . . . . . . . 2=0.60m
Control-surface chord. . . . . . . . . . . . . . . . . 2R = O.u m

Wing width .,. . . . . . . . . . . . . . . . . . . . . . . b=l.80m

Wing weight . . . . . . . . . . . . . . . . . . . . .
‘F 1

= 5.04kg

Mass moment of inertia of the wing
(neutral axis) . . . . . . . .. o.. . ..O GFZ=0.0~4kg/m/s2

Rearward position of the centroidal axis behind
the forward neutral axis . . . . . . . . . . . . . ‘F1 = O.Ollm

Rearward position of the elastic axis behind
the forward neutral axis 000000”0”0000 “O ~Z=Om

Control-surface weight . . . . . . . . . . . . . . . . GR = 0.727 kg

Mass moment of inertia of control surface . .
(axis of rotation) . . . . . . . . GR = 25.2 X 10-5 kg/m/s2

Angular frequency of the”b~niing oscillation . . . . ~ = 4.8 S-l

Angular frequency of the torsional oscillation . . . . . . ~=8s-1

Angular frequency of the torsional oscillation
of the control surface . . . . . . . . . . . . . . ~ = 0.474 s-l

b. Variation of the position of the centroidal

axis of the control surface

Figure 6 shows the critical velocity (determined by test) for a
model which can perform bending motions (vertical displacement),
torsional motions, ~d torsional motions of the control surface in the
sense of the two-dimensional problem, plotted against the position of
the centroidal axis of the control surface. (Concerning mass and
stiffness values of compilation in IV(a).) The diagram at the left
represents the critical velocity for the control surface without aero-
dynamic balance.
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The control surface of the model is designed so that, for suf-
ficiently small deflections, the leading edge does not yet protrude;
for larger deflections a step with slot originates between fin and con-
trol surface. Ar”abs-olute neglect of the control-surface rotation as
is practiced in the interpretation with rearward shifted break could not
render full justice to the balancing effect ; on the other hand, a com-
plete consideration of the control-surface rotation - which forms the
basis for the interpretations with open step - would emphasis the
balancing effect too strongly. A correct evaluation of the balancing
effect will, therefore, probably lie in between these two concepts.

The calculation with the two concepts in the rearward shifted
break and with open step confirms thi5 prediction (cf. fig. 6$ right).
Since the calculation on the control surface without aerodynamic balance
at any rate yields smaller critical velocities than the measurement, it
may well be assumed that the lower curve - which thus appertains to the
concept with rearward shifted break - renders the phenomenon more cor-
rectly. Aside from this, one will perfer to use for this example, the
concept with rearward shifted break edge, If only for the reason that the
results then lie on the ssfe side.

I hope to have shown in these ex~sitions that even now, when appro-
priate measured data on unsteady air forces on the control surfaces
with aerodynamic balance do not yet exist, one is in possession of a
certain criterion for a sensible device among the different interpre-
tations. Of course, it remains the last goal to obtain, from air-force
measurements on the oscillating wing, reliable data also for the air
forces on the control surface with aerodynamic balance.

Translated by Mary L. Mahler
National Advisory Committee
for Aeronautics
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Figure l.- Interpretationsfor the aerodynamic control-surfacebalance.
I. Control surface without aerodynamic balance.
IL Control surfaces with aerodynamic balance.
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Figure 2.- Air-force distributionPR (t) = PR’ cos cot- pRII sin d due to
-1control-surface rotation y~(t) = BR cos cot,(v = 20m/s, m = 33s ,

BR = 11.50).



frequency -l Rduced f~equencyp ,
cd~ ‘r

Figure 3.- Control-surfacemoment MRR(t) = MRR’ cos d - MRR” sincot

due to control-surfacerotation y~(t) = BR cos mt, (v = 20m/s, u = 33s-1,

‘R
= 11.50).
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Figure 4.- Adjustment of the interpretations(numerical example),
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Figure 5.- Critical velocity as a function of the position of the control-surface
axis of rotation.
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of the control surface.
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